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Abstract
Weak measurement of a subset of noncommuting observables of a quantum
system can be modeled by the open-system evolution, governed by the master
equation in the Lindblad form. The open-system density operator can be
represented as a statistical mixture over non-unitarily evolving pure states,
driven by the stochastic nonlinear Schrödinger equation (sNLSE). The globally
stable solution of the sNLSE is obtained in the case where the measured subset
of observables comprises the spectrum-generating algebra of the system. This
solution is a generalized coherent state (GCS), associated with the algebra.
The result is based on proving that the GCS minimizes the trace-norm of the
covariance matrix, associated with the spectrum-generating algebra.

PACS numbers: 03.65.Ta, 03.65.Yz, 02.50 Ey

1. Introduction

The number of solvable quantum dynamics models is quite limited. The importance of such
models is that they form a source of insight into quantum phenomena. In addition, the solvable
models are the starting point of approximate theories. An important class of solvable models
is based on a Lie-algebraic Hamiltonian of the following form:

Ĥ =
∑

j

aj X̂j (1)

where the set {X̂j } of observables is closed under the commutation relations:

[X̂i, X̂j ] = i
K∑

k=1

fijkX̂k, (2)

i.e., it forms Lie algebra (Gilmore 1974) of the system operators, known as the spectrum-
generating algebra (Bohm et al 1988) of the system.

1751-8113/08/365203+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/36/365203
mailto:misha@fh.huji.ac.il
mailto:ronnie@fh.huji.ac.il
http://stacks.iop.org/JPhysA/41/365203


J. Phys. A: Math. Theor. 41 (2008) 365203 M Khasin and R Kosloff

The solvable nature of the dynamics generated by equation (1) motivates the search of
transformation of complex many-body problems to an algebraic description. The next level
of complexity is to add the binary term

Ĥ =
∑

j

aj X̂j , +
∑
kl

bklX̂kX̂l, (3)

where aj = a∗
j and bkl = b∗

lk . Such Lie-algebraic Hamiltonians are encountered in various
fields of the many-body physics, such as molecular (Iachello and Levine 1995, Iachello 2006),
nuclear (Bohm et al 1988, Iachello 2006) and condensed matter physics (Bohm et al 1988).

A useful property of the Lie-algebraic setting is a set of states which can be thought of
as the most classical states with respect to measurement performed on the elements of the
algebra. These states are termed generalized coherent states (GCS) with respect to the algebra
(Perelomov 1985, Zhang et al 1990). An important property of the GCS is their invariance
under the action of the unperturbed Hamiltonian, linear in the algebra elements, equation (1).
This means that a GCS evolves into a GCS under the action of the Hamiltonian (1). In the
perturbed case (3) GCS are generally no longer invariant but the GCS ansatz can be used for
a mean-field approximation of the many-body dynamics (Kramer and Saraceno 1981, Zhang
et al 1990).

Any realistic physical system is open, i.e., the interaction with the dissipating environment
cannot be neglected. It is therefore of necessity to include the effect of an environment on
the dynamics. Particularly interesting is the open-system evolution modeling the process of
weak measurement (Diosi 2006). The open-system dynamics studied in the present work is
generated by the Lindblad semi-group (Lindblad 1976, Breuer and Petruccione 2002):

∂

∂t
ρ̂ = Lρ̂ = −i[Ĥ , ρ̂] −

K∑
j=1

γj [X̂j , [X̂j , ρ̂]], (4)

where the Hamiltonian has the algebraic form (1). The spectrum-generating algebra of the
system spanned by {X̂i} is assumed to be a compact semisimple algebra (Gilmore 1974)
and the basis {X̂i} is chosen to be orthonormal with respect to the Killing form (Gilmore
1974). The second term on the rhs of the Lindblad master equation (4) (the dissipation term
in what follows) is responsible for the non-unitary character of the open-system evolution and
is due to the system–bath interaction. This interaction can be interpreted as a process of weak
measurement (Diosi 2006) of operators {X̂i}Ki=1, performed on a quantum system, driven by
the Hamiltonian (3), and the coupling constant γj reflects the strength of the measurement of
the observable X̂j . It will be assumed that all the coupling constants are equal, γj = γ . This
form of the dissipation term in equation (4) is chosen to ensure invariance under the group of
unitary transformations, generated by spectrum-generating algebra, which is assumed to be
the symmetry of the system–bath interaction. As a paradigm for such open-system dynamics
(4) one may consider dynamics of a spin, immersed into an isotropic dissipating environment:

∂

∂t
ρ̂ = −iω[Ĵ 1, ρ̂] − γ

3∑
j=1

[Ĵ j , [Ĵ j , ρ̂]], (5)

where Ji satisfy the commutation relations of the su(2): [Ĵ i , Ĵ j ] = iεijkĴ k . Here, the
SU(2) group invariance of the dissipation term results from the isotropy of the system–bath
interaction.
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The solution of the master equation (4) can be represented as a statistical mixture of pure
states, evolving according to the stochastic nonlinear Schrödinger equation (sNLSE) (Gisin
1984, Diosi 1988a, Gisin and Percival 1992):

d|ψ〉 =
{

−iĤ −
K∑

i=1

γj (X̂i − 〈X̂i〉ψ)2

}
dt |ψ〉 +

K∑
i=1

(X̂i − 〈X̂i〉ψ) dξi |ψ〉, (6)

where the Wiener fluctuation terms dξi satisfy

〈dξi〉 = 0, dξi dξj = 2δij γj dt. (7)

The purpose of the present work is to study the asymptotical properties of solutions of
the sNLSE (6). We will show that the GCS associated with the spectrum-generating algebra
of the system, driven by the Lindblad equation (4), are the globally stable solutions of the
associated sNLSE (6). This property means that a group-invariant coupling to a dissipating
environment will result in dynamics which can be represented as a statistical mixture of stable
trajectories of the GCS, associated with the corresponding algebra.

2. Generalized coherent states and the total uncertainty

Let us assume that the algebra g is represented irreducibly on the system’s Hilbert space H.
Then an arbitrary state ψ ∈ H can be represented as a superposition of the generalized coherent
states (GCS) (Perelomov 1985, Zhang et al 1990) |	,ψ0〉 with respect to the corresponding
dynamical group G and an arbitrary state ψ0:

|ψ〉 =
∫

dµ(	)|	,ψ0〉〈	,ψ0|ψ〉, (8)

where µ(	) is the group-invariant measure on the coset space G/H (Gilmore 1974),
	 ∈ G/H,H ⊂ G is the maximal stability subgroup of the reference state ψ0:

h|ψ0〉 = eiφ(h)|ψ0〉, h ∈ H (9)

and the GCS |	,ψ0〉 are defined as follows:

Û (g)|ψ0〉 = Û (	h)|ψ0〉 = eiφ(h)Û (	)|ψ0〉
≡ eiφ(h)|	,ψ0〉, g ∈ G, h ∈ H, 	 ∈ G/H, (10)

where Û (g) is a unitary transformation generated by a group element g ∈ G.
The group-invariant total uncertainty of a state with respect to a compact semisimple

algebra g is defined as (Delbourgo and Fox 1977, Perelomov 1985)

�[ψ] ≡ 〈�̂ψ 〉ψ =
K∑

j=1

〈
X̂2

j

〉
ψ

−
K∑

j=1

〈X̂j 〉2
ψ, (11)

where we have used the notation �̂ψ ≡ ∑
i (X̂i − 〈X̂i〉ψ)2. The first term on the rhs of

equation (11) is the eigenvalue of the the Casimir operator of g in the (irreducible) Hilbert
space representation:

Ĉ =
K∑

j=1

X̂2
j (12)

and the second term is the generalized purity (Barnum et al 2003) of the state with respect
to g:

Pg[ψ] ≡
K∑

j=1

〈X̂j 〉2
ψ. (13)

3
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Let us define �min as a minimal total uncertainty of a quantum state and cH as the eigenvalue
of the Casimir operator of g in the system Hilbert space. Then

�min � �[ψ] � cH, (14)

The total uncertainty (11) is invariant under an arbitrary unitary transformation generated
by g. Therefore, all the GCS with respect to the algebra g and a reference state ψ0 have a fixed
value of the total invariance. It has been proved (Delbourgo and Fox 1977) that the minimal
total uncertainty �min is obtained if and only if ψ0 is the highest (or lowest) weight state of
the representation. The value of �min is given by (Delbourgo and Fox 1977, Klyachko 2002)

�min ≡ (�,µ) � �[ψ] � (�,� + µ) = cH, (15)

where � ∈ R
r is the highest weight of the representation, µ ∈ R

r is the sum of the positive
roots of g, r is the rank of g (Gilmore 1974) and (. . . , . . .) is the Euclidean scalar product in
R

r . The corresponding GCS were termed the generalized unentangled states with respect to
the algebra g (Barnum et al 2003, Klyachko 2002). The maximal value of the uncertainty is
obtained in states termed maximally or completely entangled (Barnum et al 2003, Klyachko
2002) with respect to g. The maximum value equals cH in the states having 〈ψ |X̂j |ψ〉2 = 0
for all i. Such states exist in a generic irreducible representation (irrep in what follows) of an
arbitrary compact simple algebra of observables (Klyachko 2002). Generic superpositions of
the GCS have larger uncertainty and are termed generalized entangled states with respect to g

(Barnum et al 2003, Klyachko 2002). In what follows, it is assumed that the reference state
ψ0 for the GCS minimizes the total invariance (11).

3. The main result: global stability of the generalized coherent states

3.1. The time evolution of the total uncertainty

The time evolution of the total uncertainty (11) of a pure state evolving according to the sNLSE
(6) can be calculated as follows:

d�[ψ(t)] = d
∑

i

(〈
X̂2

i

〉
ψ

− 〈X̂i〉2
ψ

) = −d
∑

i

〈X̂i〉2
ψ

= −
∑

i

(2 d〈X̂i〉ψ 〈X̂i〉ψ + d〈X̂i〉ψ d〈X̂i〉ψ), (16)

where we have used prescription of the Ito calculus: d(xy) = dxy + x dy + dx dy and the
fact that d

∑
i

〈
X̂2

i

〉
ψ

= 0 by the invariance of the Casimir operator (12) under dynamics in an

irreducible representation. To calculate dX̂i we derive the Heisenberg equations of motion,
corresponding to the sNLSE (6).

Equation (6) is equivalent to the following equation for the corresponding projector
P̂ ψ = |ψ〉〈ψ |:

dP̂ ψ =
⎛
⎝−i[Ĥ , P̂ ψ ] − γ

K∑
j=1

[X̂j , [X̂j , P̂ ψ ]]

⎞
⎠ dt +

∑
i

{(X̂i − 〈X̂i〉ψ) dξi, P̂ ψ }. (17)

Equation (17) implies that the following stochastic Heisenberg equation can be used to calculate
the increment d〈X̂i〉 for an arbitrary operator X̂i :

dX̂i =
⎛
⎝i[Ĥ , X̂i] − γ

K∑
j=1

[X̂j , [X̂j , X̂i]]

⎞
⎠ dt +

∑
j

{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}

= (i[Ĥ , X̂i] − γ cadjX̂i) dt +
∑

j

{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}, (18)
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where cadj is the quadratic Casimir in the adjoint representation (see equation (12)).
Multiplying equation (18) by 〈X̂i〉ψ , summing up over all the observables and computing
the expectation value we obtain

K∑
i=1

〈X̂i〉ψ d〈X̂i〉 =
(

i
K∑

i=1

〈X̂i〉ψ 〈[Ĥ , X̂i]〉ψ − γ cadj

K∑
i=1

〈X̂i〉2
ψ

)
dt

+
∑
j,i

〈X̂i〉ψ 〈{(X̂j − 〈X̂j 〉ψ) dξj , X̂i}〉ψ

= −γ cadj

K∑
i=1

〈X̂i〉2
ψ dt

+
K∑

i,j=1

〈X̂i〉ψ(〈{X̂j , X̂i}〉ψ − 2〈X̂j 〉ψ 〈X̂i〉ψ) dξj , (19)

where the contribution of the Hamiltonian term has vanished due to the antisymmetry of the
structure constants fjik of g:

i
K∑

i,j=1

aj 〈X̂i〉ψ 〈[X̂j , X̂i]〉ψ = i
K∑

i,j,k=1

aj 〈X̂i〉ψ 〈ifjikX̂k〉ψ

= −
K∑

j=1

aj

K∑
i,k=1

fjik〈X̂i〉ψ 〈X̂k〉ψ = 0. (20)

From equation (18) we get

d〈X̂i〉ψd〈X̂i〉ψ =
∑
k,l

dξk dξl〈{(X̂k − 〈X̂k〉ψ), X̂i}〉ψ 〈{(X̂l − 〈X̂l〉ψ), X̂i}〉ψ

= 2γ dt
∑

k

〈{(X̂k − 〈X̂k〉ψ), X̂i}〉2
ψ

= 2γ dt
∑

k

(〈{X̂k, X̂i}〉ψ − 2〈X̂k〉ψ 〈X̂i〉ψ)2. (21)

Inserting equations (21) and (20) into equation (16) we obtain

d〈�̂〉ψ = −
∑

i

(2 d〈X̂i〉ψ 〈X̂i〉ψ + d〈X̂i〉ψ d〈X̂i〉ψ)

= 2γ

(
cadj

K∑
i=1

〈X̂i〉2
ψ −

∑
k,i

(〈{X̂k, X̂i}〉ψ − 2〈X̂k〉ψ 〈X̂i〉ψ)2

)
dt

− 2
∑
j,i

〈X̂i〉ψ(〈{X̂j , X̂i}〉ψ − 2〈X̂j 〉ψ 〈X̂i〉ψ) dξj . (22)

The remaining terms in equation (22) describe the effect of the bath (weak measurement)
on the total uncertainty of a pure state evolving according to the sNLSE. It can be shown
by direct calculation that these terms vanish in a GCS. But a simpler way to show this is to
note that the infinitesimal evolution of the state, corresponding to the sNLSE (6) dropping the

5
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Hamiltonian term, is given by

|ψ〉 + |dψ〉 = exp

{
−2γ �̂ψ dt +

∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
|ψ〉

= exp

{∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
exp {−2γ �̂ψ dt}|ψ〉

= exp {φ(t)} exp

{∑
i

(X̂i − 〈X̂i〉ψ) dξi

}
|ψ〉, (23)

where we have used the fact (Delbourgo and Fox 1977) that a GCS is an eigenstate of the
operator �̂ψ , defined after equation (11). From equation (23) we see that the infinitesimal
transformation of the state is driven by the operator linear in the generators of the algebra.
Therefore, a GCS transforms into a GCS under the infinitesimal evolution1 and the total
uncertainty of the evolving state remains constant (and minimal).

The first term in equation (22), considered as a functional on the Hilbert space, has
global maximum in the GCS (Subsection C). Therefore, on average, the rate of uncertainty
loss (termed localization rate) is minimal in a GCS. In a GCS the second (stochastic) term
vanishes. Since the rate of localization is zero in a GCS, as proved above, it follows that the
average rate of localization obtains minimum at zero. Therefore, an arbitrary state localizes
on average. Since the uncertainty is minimal in a GCS, the localization on average implies
that almost every solution of the sNLSE (6) approaches asymptotically a GCS.

3.2. An illustration. su(2)-case

For the purpose of illustration let us consider a quantum system, driven by a su(2)-algebraic
Hamiltonian Ĥ = ωĴ 1, i.e., a spin. The GCS, associated with the su(2) algebra, are the
so-called spin-coherent states (Arecchi et al 1972) which are characterized by the maximal
projection of the spin. A spin-coherent state of the system in the irreducible (2j + 1)-
dimensional Hilbert space representation has the group-invariant uncertainty (11) equal to j ,
the spin quantum number of the representation. A superposition of GCS has larger uncertainty.
For example, a superposition (|−j 〉 + |j 〉)/√2 has uncertainty equal to the maximal possible
value j (j + 1), i.e., the eigenvalue of the Casimir operator. This follows from the fact that
the projection of the spin in this state in any direction vanishes and, as a consequence, its
generalized purity (13) is zero.

The Lindblad master equation, corresponding to the weak measurement of the projections
of the spin Ĵ i , is equation (5). Taking (|−j 〉+|j 〉)/√2 for the initial state, we expect to observe
stochastic evolution of a pure-state unraveling of equation (5) according to the corresponding
sNLSE (6), approaching asymptotically a spin-coherent state. The spin coherent state will
have minimal uncertainty and maximal amplitude of the spin projection.

Figure 1 shows the evolution of the normalized expectation values of the spin projections
〈Ĵ i〉/j, i = 1, 2, 3, for the pure state ψ(t) evolving according to the sNLSE (6), associated
with the master equation (5). Initial state of the system is (|−j 〉 + |j 〉)/√2 and the total
spin quantum number is j = 16. In addition, the normalized total uncertainty �[ψ]/j 2 is

1 This fact does not follow directly from the definition of the GCS, since the evolution in equation (23) is not unitary.
Nonetheless, by an application of the Baker–Campbell–Hausdorff disentangling formula (Zhang et al 1990) it can be
shown that ∀ ζi ∈ C and X̂i ∈ gexp(

∑
i ζi X̂i )|	, �〉 ∝ exp(

∑
α ηαÊ−α)|	, �〉 (Ê−α is the lowering operator of

the algebra, corresponding to the positive root α), which is a GCS up to a normalization [see Kramer and Saraceno
(1981), pp 31–2 for details].
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Figure 1. The normalized expectation values of the spin projections 〈Ĵ i〉/j, i = 1, 2, 3 (dashed
lines), and the normalized total uncertainty �[ψ]/j2 (solid line) as a function of time. The pure
state ψ(t) evolves according to the sNLSE (6), corresponding to the master equation (5). Time is
measured in units of ω−1 and the spin–bath coupling is γ = ω/160. Initial state of the system
is (|−j〉 + |j〉)/√2 and the total spin quantum number is j = 16. The asymptotic solution has
minimal (normalized) uncertainty of 1/16, i.e., it is a spin-coherent state.

plotted as a function of time. The stochastic evolution asymptotically leads to a state having
constant value of the (normalized) uncertainty equal to 1/16, i.e., the minimal value in the
representation. It follows therefore that the asymptotic solution is a spin-coherent state.

3.3. The proof of the main result

Next we prove that the first term in equation (22), considered as a functional on the Hilbert
space, has global maximum in the GCS. The first sum in this term is just the generalized
purity of the state (13), which has a global maximum in a GCS (Barnum et al 2003, Klyachko
2008), while the second sum is the trace-norm of the covariance matrix, which obtains global
minimum in a GCS.

Theorem. The trace-norm of the covariance matrix Mij = 〈{X̂i, X̂j }〉ψ − 2〈X̂i〉ψ 〈X̂j 〉ψ is
minimal in a maximal (minimal) weight state of the irrep, i.e., in a GCS.

Proof. The trace-norm is invariant under unitary transformations, generated by the algebra
g. Therefore, any orthonormal basis X̂i can be used for the calculation of the trace-norm.
Consider a particular choice of the basis X̂i such that the projection of the density operator
ρ̂ = |ψ〉〈ψ | on g is contained in the Cartan subalgebra h ⊂ g. Let us use index i, j for the
elements of h and α, β for the elements of the root subspace. Then,

Tr{M2} =
∑
i,j

M2
i,j +

∑
i,α

M2
i,α +

∑
i,α

M2
α,i +

∑
|α|
=|β|

M2
α,β +

∑
|α|=|β|

M2
α,β . (24)

Let us focus on the last term in equation (24). Since the projection of the state on g is contained
in the Cartan subalgebra, it vanishes on the root subspace, i.e., 〈X̂α〉 = 0, for every α. Then∑

|α|=|β|
M2

α,β =
∑

|α|=|β|
〈{X̂α, X̂β}〉2

ψ. (25)

7
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Using notation E±α for the raising and the lowering operators of the algebra, corresponding
to the positive root α we obtain∑
|α|=|β|

M2
α,β =

∑
|α|=|β|

〈{X̂α, X̂β}〉2
ψ = −1

2

∑
α>0

〈(Êα + Ê−α)(Êα − Ê−α)

+ (Êα − Ê−α)(Êα + Ê−α)〉2 +
∑
α>0

〈(Êα + Ê−α)2〉2 +
∑
α>0

〈(Êα − Ê−α)2〉2

= − 2
∑
α>0

〈
Ê2

α − Ê2
−α

〉2
+

∑
α>0

〈
Ê2

α + Ê2
−α + ÊαÊ−α + Ê−αÊα

〉2
+

∑
α>0

〈
Ê2

α + Ê2
−α − ÊαÊ−α − Ê−αÊα

〉2
= − 2

∑
α>0

〈
Ê2

α − Ê2
−α

〉2
+ 2

∑
α>0

〈
Ê2

α + Ê2
−α

〉2
+ 2

∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2

= 8
∑
α>0

〈
Ê2

α

〉〈Ê2
−α〉 + 2

∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2. (26)

The density operator ρ̂ = |ψ〉〈ψ | can be expressed in the basis of the eigenstates |µ〉 of
the Cartan operators X̂i ∈ h, X̂i |µ〉 = µi |µ〉

ρ̂ =
∑
µ,µ′

cµc∗
µ′ |µ〉〈µ′|. (27)

Then the last term in equation (26) obtains

2
∑
α>0

〈ÊαÊ−α + Ê−αÊα〉2 = 2
∑
α>0

⎛
⎝∑

µ,µ′
cµc∗

µ′ 〈µ′|ÊαÊ−α + Ê−αÊα|µ〉
⎞
⎠

2

= 2
∑
α>0

(∑
µ

|cµ|2〈µ|ÊαÊ−α + Ê−αÊα|µ〉
)2

. (28)

States |µ + kα〉 form an irreducible representation of the su(2), spanned by

E± ≡ E±α/|α| E3 ≡ α · Ĥ /|α|2, Ĥ i ≡ X̂i ∈ h (29)

obeying su(2) commutation relations (Georgi 1982)

[E3, E
±] = ±E±; [E+, E−] = E3. (30)

Therefore, the state |µ〉 can be labeled as |mα, jα〉, where jα is the maximal weight of the
corresponding irrep of the su(2) and mα is the weight, corresponding to the state |µ〉 in the
irrep. Then,

〈Ê−αÊα + ÊαÊ−α〉2
ψ = |α|4〈2Ê−Ê+ + Ê3〉2

ψ = |α|4〈mα, jα|2Ê−Ê+ + Ê3|mα, jα〉2

= |α|4(jα + j 2
α − m2

α)2. (31)

The term (31) obtains minimum in the maximal (minimal) weight state of the jα irrep,
corresponding to mα = jα(mα = −jα). Therefore, |mα, jα〉 is annihilated by the E+(E−),
and, by equations (29), the state |µ〉 is annihilated by Eα(E−α). The minimum of the sum (29)
is obtained in the state, annihilated by Eα(E−α) for all positive roots α, i.e., in the maximal
(minimal) weight state ρ̂ = |�〉〈�|. The first term in equation (26) is nonnegative and vanishes
at |ψ〉 = |�〉, therefore it obtains minimum at |�〉. Therefore, the term (26) in the sum (24)
obtains minimum at |�〉. Since |�〉 is an eigenstate of every Cartan operator X̂i , the first term
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in equation (24) vanishes at |�〉. For the same reason and the fact that the projection of ρ̂ on
the root subspace vanishes both the second and the third terms in equation (24) also vanish at
|�〉. The fourth term in equation (24) vanishes at |�〉 since 〈�|ÊαÊβ |�〉 = 0,∀|α| 
= |β|.
Since all these terms are nonnegative, they obtain minimum at the maximal (minimal) weight
state ρ̂ = |�〉〈�|. Therefore, the whole expression (24) for the trace-norm of the covariance
matrix obtains minimum at ρ̂ = |�〉〈�|. �

4. Conclusions

The globally stable solutions of quantum dynamics modeled by the stochastic nonlinear
Schrödinger equation (6) are the generalized coherent states, associated with the spectrum-
generating algebra of the system. Stable solutions of the sNLSE in the case of Heiseberg–
Weyl algebra have been obtained before (Diosi 1988b, Halliwell and Zoupas 1995, Schack
et al 1995). Our result refers to a compact semisimple spectrum-generating algebra. The
description by the stochastic nonlinear Schrödinger equation is equivalent to Lindblad semi-
group modeling of the process of group-invariant weak measurement of the elements of the
algebra. The Hamiltonian of the system is linear in the algebra elements, i.e., possesses
dynamical symmetry. It is conjectured that breaking the symmetry by adding nonlinearity to
the Hamiltonian results in the asymptotically stable localized solutions of the corresponding
sNLSE (see (Khasin and Kosloff 2008) for some numerical evidence). The proof of stability
is based on proving that the trace-norm of the covariance matrix, associated with the algebra,
becomes minimal in a generalized coherent state.
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